1 класc
Цифры:
1(единица), 2(двойка), 3(тройка),4(четвёрка), 5(пятёрка), 6(шестёрка), 7 (семёрка), 8(восьмёрка), 9(девятка), 0(ноль)
Однозначные числа (одна цифра в записи числа):
1(один), 2(два), 3(три),4(четыре), 5(пять), 6(шесть), 7(семь), 8(восемь), 9(девять), 0(ноль).
Двузначные числа (две цифры в записи числа):
10,11, 12,13, 14, 15. 16,17,18,19,
20,.........30,.........,40,.........,50,.........,60,.........,70..........,80..........,90.........99.
Следующее число (последующее)- число которое идет после данного ( за ним, по следам):
0 1 2 3 4 5 6 7 8 9 10
Предыдущее ( предшествующее) число- число, которое стоит перед данным числом ( впереди него):
0 1 2 3 4 5 6 7 8 9 10
Прибавить к числу 1, значит назвать следующее за ним число ( прямой порядок счета) :
+ 1
0 1 2 3 4 5 6 7 8 9 10
Вычесть из числа 1, значит назвать предыдущее число ( обратный порядок счета) :
-1
10 9 8 7 6 5 4 3 2 1 0
Прибавить число 2 – назвать число через одно число в прямом порядке счета
+2
0 2 4 6 8 10
1 3 5 7 9
Вычесть число 2- назвать число через число в обратном порядке счета
-2
10 8 6 4 2 0
9 7 5 3 1
Прибавить число 3:
+3
0 3 6 9
1 4 7 10
2 класс
Числовые выражения:
Сумма 2 + 3 Разность 5 - 2 Произведение 2 ∙ 3 Частное 6 : 3
Найти значение числового выражения - сосчитать.
Буквенные выражения
Выражения, где есть либо только буквы: a + b c - d, либо буквы и числа:
a + 5; c - 9 называется буквенным выражением.
Найти значение числового выражения, значит, вместо буквы поставить ее значение:
a + 5 при а = 2, 7, 23
2+5=7 7+5=12 23+5=28
Буквы латинского алфавита:
a - а
b - б
d - д
k - ка
x - икс
y - игрек
3 класс
Уравнения
Уравнения- это равенства, содержащие неизвестное число (y...x).
Решить уравнение- значит найти такое значание неизвестного числа. при котором равенство будет верным.
Решить уравнение- значит найти такое значание неизвестного числа. при котором равенство будет верным.
х слагаемое=сумма- известное слагаемое
х уменьшаемое=разность+ вычитаемое
х вычитаемое=уменьшаемое- разность
х множитель=произведение:известный множитель
х делимое= частное*делитель
хделитель= делимое: частное
Доли и дроби
1. Доли- это равные части целого.
Запись долей с помощью цифр называется дробью: ⅔ ⅓,⅜,⅞.
2.Верхнее число называется числителем, нижнее - знаменателем.
3.Знаменатель показывает, на сколько частей делится число: ⅔,⅓- на 3 части; ⅜,⅞. – на 8 частей.
4.Числитель показывает, сколько частей (из разделенного числа) взяли: ⅔ - 2 части из3; ⅓- 1 часть из 3; ⅜- 3 части из 8; ⅞- 7 частей из 8.
5. Сравнение долей. Сравнивают только доли одной фигуры.
6. Задачи на доли а) Часть от числа- прямая задача: ⅓ от 6 6:3=2 6 ? ⅓ = 2 (6:2=3)
б) Число делится на знаменатель и умножается на числитель: ⅜ от 16 16:8∙ 3=6 16 ? ⅜ = 6 (16:8∙ 3=6 ) 6.а)
в)Число по его части – обратная задача: ⅓ = 6 ? 6 ∙3=18 ⅓ = 6 ? целое (6 ∙3=18 )
д)Число делится на числитель и умножается на знаменатель: ⅜=18 ? 18:3 ∙8=48 ⅛=18
Решение задач
При всем многообразии подходов к обучению решению задач, к этапам решения авторы (Как проектировать универсальные учебные действия в начальной школе: от действия к мысли: пособие для учителя / А.Г.Асмолов, Г.В.Бурменская, И.А.Володарская и др.; под ред. А.Г.Асмолова. – М.: Просвещение, 2008. – с.. 91)выделяют следующие компоненты общего приема:
1) Анализ текста задачи (семантический, логический, математический);
2) Перевод текста на язык математики с помощью вербальных и невербальных средств;
3) Установление отношений между данными и вопросом;
4) Составление плана решения;
5) Осуществление плана решения;
6) Проверка и оценка решения задачи.
Так рабочие тетради предлагают в качестве ключевых в начальной школе рассматривать всего 5 типов задач (и обратные к ним задачи).
Модели задач /novye_modeli_zadach.docx
Геометрия в начальной школе
Точка-самая элементарная(простая) фигура в геометрии.
Луч- часть прямой линии, ограниченной с одной стороны.
Отрезок- часть прямой линии, ограниченной с двух сторон.
Ломаная линия состоит из отрезков-звеньев.
Треугольник- многоугольник. у которого 3 стороны, 3 угла и 3 вершины.
Треугольники бывают прямоугольные, остроугольные, тупоугольные (по углам):треугольники бывают равносторонними, равнобедренными, разносторонними (по сторонам.)
Четырёхугольник- многоугольник. у которого 4 стороны, 4 угла и 4 вершины.
Прямоугольник-это четырёхугольник, у которого все углы прямые, а противоположные стороны равны.
Квадрат-это прямоугольник, у которого все стороны равны.
Диагональ-это отрезок, соединяющий противоположные углы в многоугольнике.
Окружность-линия, показывающая границу круга (точка О- центр окружности).
Круг-это вырезанная или раскрашенная окружность.
Диаметр-отрезок, проходящий через центр окружности и соединяющий две её точки.
Радиус- отрезок, соединяющий центр окружности с любой её точкой (диаметр равен двум радиусам).
Периметр- сумма длин всех сторон фигур, измеряется в единицах длины (мм,см.дм.м.км):
Pпрямоугольника=(a+b)*2; Pквадрата=4*a; P треугольника=a+b+c
Площадь-вся поверхность фигуры, измеряется в единицах площади (квадратных см. квадратныХ дм, квадратных м, арах, гектарах):
S прямоугольника=a*b; S квадрата=a*a